My first experience with the numerical solution of partial differential equations (PDEs) was with finite difference methods. I found finite difference methods to be somewhat fiddly: it is quite an exercise in patience to, for example, work out the appropriate fifth-order finite difference approximation to a second order differential operator on an irregularly spaced grid and even more of a pain to prove that the scheme is convergent. I found that I liked the finite element method a lot better1Finite element methods certainly have their own fiddly-nesses (as anyone who has worked with a serious finite element code can no doubt attest to). as there was a unifying underlying functional analytic theory, Galerkin approximation, which showed how, in a sense, the finite element method computed the best possible approximate solution to the PDE among a family of potential solutions. However, I came to feel later that Galerkin approximation was, in a sense, the more fundamental concept, with the finite element method being one particular instantiation (with spectral methods, boundary element methods, and the conjugate gradient method being others). In this post, I hope to give a general introduction to Galerkin approximation as computing the best possible approximate solution to a problem within a certain finite-dimensional space of possibilities.
Systems of Linear Equations
Let us begin with a linear algebraic example, which is unburdened by some of the technicalities of partial differential equations. Suppose we want to solve a very large system of linear equations , where the matrix
is symmetric and positive definite (SPD). Suppose that
is
where
is so large that we don’t even want to store all
components of the solution
on our computer. What can we possibly do?
One solution is to consider only solutions lying in a subspace
of the set of all possible solutions
. If this subspace has a basis
, then the solution
can be represented as
and one only has to store the
numbers
. In general,
will not belong to the subspace
and we must settle for an approximate solution
.
The next step is to convert the system of linear equations into a form which is more amenable to approximate solution on a subspace
. Note that the equation
encodes
different linear equations
where
is the
th row of
and
is the
th element of
. Note that the
th equation is equivalent to the condition
, where
is the vector with zeros in all entries except for the
th entry which is a one. More generally, by multiplying the equation
by an arbitrary test row vector
, we get
for all
. We refer to this as a variational formulation of the linear system of equations
. In fact, one can easily show that the variational problem is equivalent to the system of linear equations:
(1)
Since we are seeking an approximate solution from the subspace , it is only natural that we also restrict our test vectors
to lie in the subspace
. Thus, we seek an approximate solution
to the system of equations
as the solution of the variational problem
(2)
One can relatively easily show this problem possesses a unique solution .2Here is a linear algebraic proof. As we shall see below, the same conclusion will also follow from the general Lax-Milgram theorem. Let
be a matrix whose columns form a basis for
. Then every
can be written as
for some
. Thus, writing
, we have that
for every
. But this is just a variational formulation of the equation
. The matrix
is SPD since
for
since
is SPD. Thus
has a unique solution
. Thus
is the unique solution to the variational problem Eq. (2). In what sense is
a good approximate solution for
? To answer this question, we need to introduce a special way of measuring the error to an approximate solution to
. We define the
-inner product of a vector
and
to be
and the associated
-norm
.3Note that
-norm can be seen as a weighted Euclidean norm, where the components of the vector
in the direction of the eigenvectors of
are scaled by their corresponding eigenvector. Concretely, if
where
is an eigenvector of
with eigenvalue
(
), then we have
. All of the properties satisfied by the familiar Euclidean inner product and norm carry over to the new
-inner product and norm (e.g., the Pythagorean theorem). Indeed, for those familiar, one can show
satisfies all the axioms for an inner product space.
We shall now show that the error between
and its Galerkin approximation
is
-orthogonal to the space
in the sense that
for all
. This follows from the straightforward calculation, for
,
(3)
where since
solves the variational problem Eq. (1) and
since
solves the variational problem Eq. (2).
The fact that the error is
-orthogonal to
can be used to show that
is, in a sense, the best approximate solution to
in the subspace
. First note that, for any approximate solution
to
, the vector
is
-orthogonal to
. Thus, by the Pythagorean theorem,
(4)
Thus, the Galerkin approximation is the best approximate solution to
in the subspace
with respect to the
-norm,
for every
. Thus, if one picks a subspace
for which the solution
almost lies in
4In the sense that
is small then
will be a good approximate solution to
, irrespective of the size of the subspace
.
Variational Formulations of Differential Equations
As I hope I’ve conveyed in the previous section, Galerkin approximation is not a technique that only works for finite element methods or even just PDEs. However, differential and integral equations are one of the most important applications of Galerkin approximation since the space of all possible solution to a differential or integral equation is infinite-dimensional: approximation in a finite-dimensional space is absolutely critical. In this section, I want to give a brief introduction to how one can develop variational formulations of differential equations amenable to Galerkin approximation. For simplicity of presentation, I shall focus on a one-dimensional problem which is described by an ordinary differential equation (ODE) boundary value problem. All of this generalized wholesale to partial differential equations in multiple dimensions, though there are some additional technical and notational difficulties (some of which I will address in footnotes). Variational formulation of differential equations is a topic with important technical subtleties which I will end up brushing past. Rigorous references are Chapters 5 and 6 from Evans’ Partial Differential Equations or Chapters 0-2 from Brenner and Scott’s The Mathematical Theory of Finite Element Methods.
As our model problem for which we seek a variational formulation, we will focus on the one-dimensional Poisson equation, which appears in the study of electrostatics, gravitation, diffusion, heat flow, and fluid mechanics. The unknown is a real-valued function on an interval which take to be
.5In higher dimensions, one can consider an arbitrary domain
with, for example, a Lipschitz boundary. We assume Dirichlet boundary conditions that
is equal to zero on the boundary
.6In higher dimensions, one has
on the boundary
of the region
. Poisson’s equations then reads7
on
and
for higher dimensions, where
is the Laplacian operator.
(5)
We wish to develop a variational formulation of this differential equation, similar to how we develop a variational formulation of the linear system of equations in the previous section. To develop our variational formulation, we take inspiration from physics. If represents, say, the temperature at a point
, we are never able to measure
exactly. Rather, we can measure the temperature in a region around
with a thermometer. No matter how carefully we engineer our thermometer, our thermometer tip will have some volume occupying a region
in space. The temperature
measured by our thermometer will be the average temperature in the region
or, more generally, a weighted average
where
is a weighting function which is zero outside the region
. Now let’s use our thermometer to “measure” our differential equation:
(6)
This integral expression is some kind of variational formulation of our differential equation, as it is an equation involving the solution to our differential equation which must hold for every averaging function
. (The precise meaning of every will be forthcoming.) It will benefit us greatly to make this expression more “symmetric” with respect to
and
. To do this, we shall integrate by parts:8Integrating by parts is harder in higher dimensions. My personal advice for integrating by parts in higher dimensions is to remember that integration by parts is ultimately a result of the product rule. As such, to integrate by parts, we first write an expression involving our integrand using the product rule of some differential operator and then integrate by both sides. In this case, notice that
. Rearranging and integrating, we see that
. We then apply the divergence theorem to the last term to get
, where
represents an outward facing unit normal to the boundary
and
represents integration on the surface
. If
is zero on
, we conclude
for all nice functions
on
satisfying
on
.
(7)
In particular, if is zero on the boundary
, then the second two terms vanish and we’re left with the variational equation
(8)
Compare the variational formulation of the Poisson equation Eq. (8) to the variational formulation of the system of linear equations in Eq. (1). The solution vector
in the differential equation context is a function
satisfying the boundary condition of
being zero on the boundary
. The right-hand side
is replaced by a function
on the interval
. The test vector
is replaced by a test function
on the interval
. The matrix product expression
is replaced by the integral
. The product
is replaced by the integral
. As we shall soon see, there is a unifying theory which treats both of these contexts simultaneously.
Before this unifying theory, we must address the question of which functions we will consider in our variational formulation. One can show that all of the calculations we did in this section hold if
is a continuously differentiable function on
which is zero away from the endpoints
and
and
is a twice continuously differentiable function on
. Because of technical functional analytic considerations, we shall actually want to expand the class of functions in our variational formulation to even more functions
. Specifically, we shall consider all functions
which are (A) square-integrable (
is finite), (B) possess a square integrable derivative9More specifically, we only insist that
possess a square-integrable weak derivative.
(
is finite), and (C) are zero on the boundary. We refer to this class of functions as the Sobolev space
.10The class of functions satisfying (A) and (B) but not necessarily (C) is the Sobolev space
. For an arbitrary function in
, the existence of a well-defined restriction to the boundary
and
is actually nontrivial to show, requiring showing the existence of a trace operator. Chapter 5 of Evan’s Partial Differential Equations is a good introduction to Sobolev spaces. The Sobolev spaces
and
naturally extend to spaces
and
for an arbitrary domain
with a nice boundary.
Now this is where things get really strange. Note that it is possible for a function to satisfy the variational formulation Eq. (8) but for
not to satisfy the Poisson equation Eq. (5). A simple example is when
possesses a discontinuity (say, for example, a step discontinuity where
is
and then jumps to
). Then no continuously differentiable
will satisfy Eq. (5) at every point in
and yet a solution
to the variational problem Eq. (8) exists! The variational formulation actually allows us to give a reasonable definition of “solving the differential equation” when a classical solution to
does not exist. Our only requirement for the variational problem is that
, itself, belongs to the space
. A solution to the variational problem Eq. (8) is called a weak solution to the differential equation Eq. (5) because, as we have argued, a weak solution to Eq. (8) need not always solve Eq. (5).11One can show that any classical solution to Eq. (5) solves Eq. (8). Given certain conditions on
, one can go the other way, showing that weak solutions are indeed bonafide classical solutions. This is the subject of regularity theory.
The Lax-Milgram Theorem
Let us now build up an abstract language which allows us to use Galerkin approximation both for linear systems of equations and PDEs (as well as other contexts). If one compares the expressions from the linear systems context and
from the differential equation context, one recognizes that both these expressions are so-called bilinear forms: they depend on two arguments (
and
or
and
) and are a linear transformation in each argument independently if the other one is fixed. For example, if one defines
one has
. Similarly, if one defines
, then
.
Implicitly swimming in the background is some space of vectors or function which this bilinear form is defined upon. In the linear system of equations context, this space
of
-dimensional vectors and in the differential context, this space is
as defined in the previous section.12The connection between vectors and functions is even more natural if one considers a function
as a vector of infinite length, with one entry for each real number
. Call this space
. We shall assume that
is a special type of linear space called a Hilbert space, an inner product space (with inner product
) where every Cauchy sequence converges to an element in
(in the inner product-induced norm).13Note that every inner product space has a unique completion to a Hilbert space. For example, if one considers the space
of
smooth functions which are zero away from the boundary of
with the inner product
, the completion is
. A natural extension to higher dimensions hold. The Cauchy sequence convergence property, also known as metric completeness, is important because we shall often deal with a sequence of entries
which we will need to establish convergence to a vector
. (Think of
as a sequence of Galerkin approximations to a solution
.)
With these formalities, an abstract variational problem takes the form
(9)
where is a bilinear form on
and
is a linear form on
(a linear map
). There is a beautiful and general theorem called the Lax-Milgram theorem which establishes existence and uniqueness of solutions to a problem like Eq. (9).
Theorem (Lax-Milgram): Let and
satisfy the following properties:
- (Boundedness of
) There exists a constant
such that every
,
.
- (Coercivity) There exists a positive constant
such that
for every
.
- (Boundedness of
) There exists a constant
such that
for every
.
Then the variational problem Eq. (9) possesses a unique solution.
For our cases, will also be symmetric
for all
. While the Lax-Milgram theorem holds without symmetry, let us continue our discussion with this additional symmetry assumption. Note that, taken together, properties (1-2) say that the
-inner product, defined as
, is no more than so much bigger or smaller than the standard inner product
of
and
.14That is, one has that the
-norm and the
-norm are equivalent in the sense that
. so the norms
and
define the same topology.
Let us now see how the Lax-Milgram theorem can apply to our two examples. For a reader who wants a more “big picture” perspective, they can comfortably skip to the next section. For those who want to see Lax-Milgram in action, see the discussion below.
General Galerkin Approximation
With our general theory set up, Galerkin approximation for general variational problem is the same as it was for a system of linear equations. First, we pick an approximation space which is a subspace of
. We then have the Galerkin variational problem
(13)
Provided and
satisfy the conditions of the Lax-Milgram theorem, there is a unique solution
to the problem Eq. (13). Moreover, the special property of Galerkin approximation holds: the error
is
-orthogonal to the subspace
. Consequently,
is te best approximate solution to the variational problem Eq. (9) in the
-norm. To see the
-orthogonality, we have that, for any
,
(14)
where we use the variational equation Eq. (9) for and Eq. (13) for
. Note the similarities with Eq. (3). Thus, using the Pythagorean theorem for the
-norm, for any other approximation solution
, we have22Compare Eq. (4).
(15)
Put simply, is the best approximation to
in the
-norm.23Using the fact the norms
and
are equivalent in virtue of Properties (1-2), one can also show that
is within a constant factor
of the best approximation in the norm
. This is known as Céa’s Lemma.
Galerkin approximation is powerful because it allows us to approximate an infinite-dimensional problem by a finite-dimensional one. If we let be a basis for the space
, then the approximate solution
can be represented as
. Since
form a basis of
, to check that the Galerkin variational problem Eq. (13) holds for all
it is sufficient to check that it holds for
.24For an arbitrary
can be written as
, so
. Thus, plugging in
and
into Eq. (13), we get (using bilinearity of
)
(16)
If we define and
, then this gives us a matrix equation
for the unknowns
parametrizing
. Thus, we can compute our Galerkin approximation by solving a linear system of equations.
We’ve covered a lot of ground so let’s summarize. Galerkin approximation is a technique which allows us to approximately solve a large- or infinite-dimensional problem by searching for an approximate solution in a smaller finite-dimensional space of our choosing. This Galerkin approximation is the best approximate solution to our original problem in the
-norm. By choosing a basis
for our approximation space
, we reduce the problem of computing a Galerkin approximation to a linear system of equations.
Design of a Galerkin approximation scheme for a variational problem thus boils down to choosing the approximation space and a basis
. Picking
to be a space of piecewise polynomial functions (splines) gives the finite element method. Picking
to be a space spanned by a collection of trigonometric functions gives a Fourier spectral method. One can use a space spanned by wavelets as well. The Galerkin framework is extremely general: give it a subspace
and it will give you a linear system of equations to solve to give you the best approximate solution in
.
Two design considerations factor into the choice of space and basis
. First, one wants to pick a space
, where the solution
almost lies in. This is the rationale behind spectral methods. Smooth functions are very well-approximated by short truncated Fourier expansions, so, if the solution
is smooth, spectral methods will converge very quickly. Finite element methods, which often use low-order piecewise polynomial functions, converge much more slowly to a smooth
. The second design consideration one wants to consider is the ease of solving the system
resulting from the Galerkin approximation. If the basis function
are local in the sense that most pairs of basis functions
and
aren’t nonzero at the same point
(more formally,
and
have disjoint supports for most
and
), the system
will be sparse and thus usually much easier to solve. Traditional spectral methods usually result in a harder-to-solve dense linear systems of equations.25There are clever ways of making spectral methods which lead to sparse matrices. Conversely, if one uses high-order piecewise polynomials in a finite element approximation, one can get convergence properties similar to a spectral method. These are called spectral element methods. It should be noted that both spectral and finite element methods lead to ill-conditioned matrices
, making integral equation-based approaches preferable if one needs high-accuracy.26For example, only one researcher using a finite-element method was able to meet Trefethen’s challenge to solve the Poisson equation to eight digits of accuracy on an L-shaped domain (see Section 6 of this paper). Getting that solution required using a finite-element method of order 15! Integral equations, themselves, are often solved using Galerkin approximation, leading to so-called boundary element methods.
Upshot: Galerkin approximation is a powerful and extremely flexible methodology for approximately solving large- or infinite-dimensional problems by finding the best approximate solution in a smaller finite-dimensional subspace. To use a Galerkin approximation, one must convert their problem to a variational formulation and pick a basis for the approximation space. After doing this, computing the Galerkin approximation reduces down to solving a system of linear equations with dimension equal to the dimension of the approximation space.
The “big idea” described here, which is indeed big, really goes back to Rayleigh. Ritz extended it to what we would recognize today as the (Bubnov) Galerkin method. Finite element interpolation on triangles dates to Courant (a student of Hilbert’s) in the 1920s, or perhaps teens.
There is an excellent article by Martin Gander about the history, https://www.unige.ch/~gander/Preprints/Ritz.pdf, which shows that Ritz created this method in his thesis.
Nice writeup! Seems like this might be a typo?
a(x,x) = x^\top Ax \ge \lambda_{\min} = x^\top x
The typo should be corrected now. Thanks for catching this!
The Golomb-Weinberger principle gives another (seemingly less well-known) perspective on “best approximation”. A related approach is the Nystrom method. Comparing these might be instructive.